If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19-7x^2=0
a = -7; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-7)·19
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{133}}{2*-7}=\frac{0-2\sqrt{133}}{-14} =-\frac{2\sqrt{133}}{-14} =-\frac{\sqrt{133}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{133}}{2*-7}=\frac{0+2\sqrt{133}}{-14} =\frac{2\sqrt{133}}{-14} =\frac{\sqrt{133}}{-7} $
| 390-x=150 | | |x-4|=24 | | 5-12x^2=0 | | x^2-5x+20=34 | | (x+9)(2x–5)=0 | | 10(x-5)=9(x+5 | | 10(x-5)=9(x | | 7x^2-9072=0 | | 3(4w−3)=−13(5−w) | | x^2-62x+961=0 | | 1-4x+3=12-3x | | -5b=22 | | 2t^2=3-10t | | r+15=3r-4+5 | | 53-x=17 | | -2/y=-4 | | x-5(-1)=5 | | (2+76/1+9)+4-3*9=x | | 85=5(2x+1) | | 2−3m=1−2 | | 15*3x=5 | | 4v-7=-31 | | 2t^2+10t=3 | | -8(6-v)=-96 | | 32+x=3(x+6) | | 136=2(8n+1)+6 | | 3x+2x+x+54=180 | | n+7(n+1)=-3n-4 | | 3b-9=3b-9 | | 200=3^x | | 12x-5-9x=7 | | 4(b-3)+b=-17 |